Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharm Sci ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38492847

RESUMO

Water-stable metal-organic frameworks based on UIO-66@NH2 were synthesized to transport Letrozole into breast cancer cells. The UIO-66@NH2 nanoparticles had a spherical shape and triangular base pyramid morphology, with a size range of 100-200 nm. Fourier transform infrared spectroscopy confirmed the efficient adsorption of Letrozole on UIO-66@NH2. The drug release profile showed a gradual, pH-dependent release of Letrozole from the nanoparticles, with a significant increase in acidic environments, indicating the adaptable release potential of UIO-66@NH2@Let in the breast cancer microenvironment. The size and entrapment efficiency were more stable at 4 °C than at 25 °C. To evaluate the cytotoxic effects of UIO-66@NH2@Let, MTT assay, gene expression analysis, flow cytometry, reactive oxygen species generation, migration assay, and DAPI staining were performed. Moreover, according to IC50 results, the incorporation of Letrozole into UIO-66@NH2 significantly improved its anticancer activity. The results also showed that the developed formulations induced apoptosis through both intrinsic and extrinsic pathways and inhibited cancer progression. The efficacy of the formulations in inducing apoptosis was validated by DAPI staining microscopy and flow cytometry analysis. Therefore, the Letrozole-loaded UIO-66@NH2 MOFs developed in this study can be considered as a unique and sophisticated anticancer delivery nanosystem with promising in vitro anticancer properties.

2.
ACS Appl Bio Mater ; 7(3): 1449-1468, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38442406

RESUMO

This study introduces a tyrosol-loaded niosome integrated into a chitosan-alginate scaffold (Nio-Tyro@CS-AL), employing advanced electrospinning and 3D printing techniques for wound healing applications. The niosomes, measuring 185.40 ± 6.40 nm with a polydispersity index of 0.168 ± 0.012, encapsulated tyrosol with an efficiency of 77.54 ± 1.25%. The scaffold's microsized porous structure (600-900 µm) enhances water absorption, promoting cell adhesion, migration, and proliferation. Mechanical property assessments revealed the scaffold's enhanced resilience, with niosomes increasing the compressive strength, modulus, and strain to failure, indicative of its suitability for wound healing. Controlled tyrosol release was demonstrated in vitro, essential for therapeutic efficacy. The scaffold exhibited significant antibacterial activity against Pseudomonas aeruginosa and Staphylococcus aureus, with substantial biofilm inhibition and downregulation of bacterial genes (ndvb and icab). A wound healing assay highlighted a notable increase in MMP-2 and MMP-9 mRNA expression and the wound closure area (69.35 ± 2.21%) in HFF cells treated with Nio-Tyro@CS-AL. In vivo studies in mice confirmed the scaffold's biocompatibility, showing no significant inflammatory response, hypertrophic scarring, or foreign body reaction. Histological evaluations revealed increased fibroblast and macrophage activity, enhanced re-epithelialization, and angiogenesis in wounds treated with Nio-Tyro@CS-AL, indicating effective tissue integration and repair. Overall, the Nio-Tyro@CS-AL scaffold presents a significant advancement in wound-healing materials, combining antibacterial properties with enhanced tissue regeneration, and holds promising potential for clinical applications in wound management.


Assuntos
Quitosana , Álcool Feniletílico/análogos & derivados , Camundongos , Animais , Quitosana/farmacologia , Quitosana/química , Lipossomos , Alginatos/farmacologia , Alginatos/química , Cicatrização , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/química , Impressão Tridimensional
3.
Cell J ; 25(6): 407-417, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37434458

RESUMO

OBJECTIVE: Surgery and chemotherapy are the most common therapeutic strategies proposed for oral squamous cell carcinoma (OSCC). However, some of the disadvantages associated with the current methods like unwanted side effects and poor drug response lead the scientist to seek for novel modalities and delivery approaches to enhance the efficacy of treatments. The study aimed to assess the effectiveness of disulfiram (DSF)-loaded Niosomes on cancerous phenotypes of the OSCC cells. MATERIALS AND METHODS: In this experimental study, an optimum formulation of DSF-loaded Niosomes was developed for the treatment of OSCC cells to reduce drug doses and improve the poor stability of DSF in the OSCC environment. The design expert software was utilized to optimize the particles in terms of size, polydispersity index (PDI), and entrapment efficacy (EE). RESULTS: Acidic pH increased the release rate of DSF from these formulations. The size, PDI, and EE of Niosomes were more stable at 4°C compared to 25°C. The results indicated that DSF-loaded Niosomes could induce apoptosis (P=0.019) in the OSCC cells compared to the control group. Moreover, it could reduce colony formation ability (P=0.0046) and also migration capacity of OSCC cells (P=0.0015). CONCLUSION: Our findings indicated that the application of proper dose of DSF-loaded Niosomes (12.5 µg/ml) increases apoptosis, decreases colony formation capacity and declines the migration ability of OSCC cells.

4.
EXCLI J ; 22: 367-391, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37223084

RESUMO

Non-alcoholic fatty liver disease (NAFLD) has become the world's most common chronic liver disease. However, due to the lack of reliable in vitro NAFLD models, drug development studies have faced many limitations, and there is no food and drug administration-approved medicine for NAFLD treatment. A functional biomimetic in vitro human liver model requires an optimized natural microenvironment using appropriate cellular composition, to provide constructive cell-cell interactions, and niche-specific bio-molecules to supply crucial cues as cell-matrix interplay. Such a suitable liver model could employ appropriate and desired biochemical, mechanical, and physical properties similar to native tissue. Moreover, bioengineered three-dimensional tissues, specially microtissues and organoids, and more recently using infusion-based cultivation systems such as microfluidics can mimic natural tissue conditions and facilitate the exchange of nutrients and soluble factors to improve physiological function in the in vitro generated constructs. This review highlights the key players involved in NAFLD initiation and progression and discussed the available cells and matrices for in vitro NAFLD modeling. The strategies for optimizing the liver microenvironment to generate a powerful and biomimetic in vitro NAFLD model were described as well. Finally, the current challenges and future perospective for promotion in this subject were discussed.

5.
Eur J Pharm Biopharm ; 188: 33-47, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37105361

RESUMO

Gastric cancer (GC) is known as a deadly malignancy all over the world, yet none of the current therapeutic regimens have achieved efficacy. this current study has aimed to optimize and reduce treatment doses and overcome multidrug resistance in GC by developing optimum niosomal formulation for the delivery of doxorubicin (DXR), paclitaxel (PTX), and their co-delivery. The particles' size, polydispersity index (PDI), and entrapment efficacy (EE%) were optimized using statistical techniques, i.e., Box-Behnken and Central Composite Design. In contrast to soluble drug formulations, the release rate of medicines from nanoparticles were higher in physiological and acidic pH. Niosomes were more stable at 4 °C, compared to 25 °C. The MTT assay revealed that the IC50 of drug-loaded niosomes was the lowest among all developed formulations. The apoptosis-related genes (CASPASE-3, CASPASE-8, and CASPASE-9) and tumor suppressor genes (BAX, BCL2) were evaluated in cancer cells before and after treatment. In comparison to control cells and cells treated with soluble forms of DXR and PTX, while the expression of BCL2 decreased, the expression of BAX, CASPASE-3, CASPASE-8, and CASPASE-9 was enhanced in cells treated with drug-loaded niosomes. Drug-loaded niosomes inhibited colony formation capacity and increased apoptosis in human AGS gastric cancer cells. Our results indicate that co-delivery of DXR and PTX-loaded niosomes may be an effective and innovative therapeutic approach to gastric cancer.


Assuntos
Nanopartículas , Neoplasias Gástricas , Humanos , Paclitaxel/farmacologia , Caspase 3 , Caspase 9 , Caspase 8 , Lipossomos , Neoplasias Gástricas/tratamento farmacológico , Proteína X Associada a bcl-2 , Liberação Controlada de Fármacos , Doxorrubicina/farmacologia
6.
Biomater Adv ; 149: 213384, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37060635

RESUMO

Klebsiella pneumoniae (Kp) is a common pathogen inducing catheter-related biofilm infections. Developing effective therapy to overcome antimicrobial resistance (AMR) in Kp is a severe therapeutic challenge that must be solved. This study aimed to prepare niosome-encapsulated GENT (Gentamicin) and EDTA (Ethylenediaminetetraacetic acid) (GENT-EDTA/Nio) to evaluate its efficacy toward Kp strains. The thin-film hydration method was used to prepare various formulations of GENT-EDTA/Nio. Formulations were characterized for their physicochemical characteristics. GENT-EDTA/Nio properties were used for optimization with Design-Expert Software. Molecular docking was utilized to determine the antibacterial activity of GENT. The niosomes displayed a controlled drug release and storage stability of at least 60 days at 4 and 25 °C. GENT-EDTA/Nio performance as antimicrobial agents has been evaluated by employing agar well diffusion method, minimum bactericidal concentration (MBC), and minimum inhibitory concentration (MIC) against the Kp bacteria strains. Biofilm formation was investigated after GENT-EDTA/Nio administration through different detection methods, which showed that this formulation reduces biofilm formation. The effect of GENT-EDTA/Nio on the expression of biofilm-related genes (mrkA, ompA, and vzm) was estimated using QRT-PCR. MTT assay was used to evaluate the toxicity effect of niosomal formulations on HFF cells. The present study results indicate that GENT-EDTA/Nio decreases Kp's resistance to antibiotics and increases its antibiotic and anti-biofilm activity and could be helpful as a new approach for drug delivery.


Assuntos
Klebsiella pneumoniae , Lipossomos , Antibacterianos/farmacologia , Antibacterianos/química , Ácido Edético/química , Ácido Edético/farmacologia , Klebsiella pneumoniae/genética , Simulação de Acoplamento Molecular
7.
Biomed Pharmacother ; 161: 114487, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36963361

RESUMO

Treatment resistance is one of the major barriers for therapeutic strategies in hepatocellular carcinoma (HCC). Many studies have indicated that chemotherapy and radiotherapy induce autophagy machinery (cell protective autophagy) in HCC cells. In addition, many experiments report a remarkable crosstalk between treatment resistance and autophagy pathways. Thus, autophagy could be one of the key factors enabling tumor cells to hinder induced cell death after medical interventions. Therefore, extensive research on the molecular pathways involved in resistance induction and autophagy have been conducted to achieve the desired therapeutic response. The key molecular pathways related to the therapy resistance are TGF-ß, MAPK, NRF2, NF-κB, and non-coding RNAs. In addition, EMT, drug transports, apoptosis evasion, DNA repair, cancer stem cells, and hypoxia could have considerable impact on the hepatoma cell's response to therapies. These mechanisms protect tumor cells against various treatments and many studies have shown that each of them is connected to the molecular pathways of autophagy induction in HCC. Hence, autophagy inhibition may be an effective strategy to improve therapeutic outcome in HCC patients. In this review, we further highlight how autophagy leads to poor response during treatment through a complex molecular network and how it enhances resistance in primary liver cancer. We propose that combinational regimens of approved HCC therapeutic protocols plus autophagy inhibitors may overcome drug resistance in HCC therapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Resistencia a Medicamentos Antineoplásicos , Autofagia , Linhagem Celular Tumoral , Apoptose
8.
Toxicol Appl Pharmacol ; 387: 114851, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31812774

RESUMO

Mesenchymal stem cells (MSCs) have unique potentials, including migration and immunomodulation. Identification of the factors that enhance these activities can improve clinical applications of MSCs. This study aimed to investigate total antioxidant capacity (TAC) and migration potential of mouse MSCs exposed to thymoquinone (TQ) in vitro, and to examine the effect of TQ-treated MSCs on the expression of mouse immune cell markers. The results of total antioxidant capacity and wound healing assays showed that TQ increased the rate of MSCs TAC and migration in a dose- and time-dependent manner. The maximum TAC and migration were detected at 600 and 250 ng/ml of TQ, respectively. Functionally, the real-time PCR data analysis indicated that TQ induced c-Met and Cxcr4 expression and therefore, there may be a correlation between upregulation of these genes and increased MSCs migration. TQ also enhanced the up and down regulating impact of MSCs on Rorγt and Plzf expression and the expression of Tcf4 in mouse immune cells, respectively. Overall, this study declares that TQ increases the TAC of MSCs. It also proposes that TQ may, through activation of c-MET and CXCR4 signalling pathways, promote MSCs migration. TQ may also augment MSCs immunogenicity through its influence on the expression of genes involved in commitment of mouse immune system cells in vivo.


Assuntos
Benzoquinonas/farmacologia , Movimento Celular/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Movimento Celular/imunologia , Células Cultivadas , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Células-Tronco Mesenquimais/imunologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/imunologia , Cultura Primária de Células , Transdução de Sinais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...